discrim contains simple bindings to enable the parsnip package to fit various discriminant analysis models, such as

  • Linear discriminant analysis (LDA, simple and L2 regularized)
  • Regularized discriminant analysis (RDA, via Friedman (1989))
  • Flexible discriminant analysis (FDA) using MARS features
  • Naive Bayes models

Installation

devtools::install_github("tidymodels/discrim")

Example

Here is a simple model using a simulated two-class data set contained in the package:

library(discrim)
#> Loading required package: parsnip

parabolic_grid <-
  expand.grid(X1 = seq(-5, 5, length = 100),
              X2 = seq(-5, 5, length = 100))

fda_mod <-
  discrim_flexible(num_terms = 3) %>%
  # increase `num_terms` to find smoother boundaries
  set_engine("earth") %>%
  fit(class ~ ., data = parabolic)

parabolic_grid$fda <-
  predict(fda_mod, parabolic_grid, type = "prob")$.pred_Class1

library(ggplot2)
ggplot(parabolic, aes(x = X1, y = X2)) +
  geom_point(aes(col = class), alpha = .5) +
  geom_contour(data = parabolic_grid, aes(z = fda), col = "black", breaks = .5) +
  theme_bw() +
  theme(legend.position = "top") +
  coord_equal()

Contributing

This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.